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Abstract. The relation between moments and free cumulants in free probability is
essentially a compositional inversion. We lift it at the level of the noncommutative Faà
di Bruno algebra, and of an operad of Schröder trees. We get a new formula for free
cumulants in terms of trees, and we recover an interpretation of the relation in terms
of characters due to Ebrahimi-Fard and Patras.

Résumé. La relation entre moments et cumulants libres en probabilités libres est es-
sentiellement une inversion compositionnelle. Nous la relevons au niveau de l’agèbre
de Faà di Bruno non-commutative et d’une opérade d’arbres de Schröder. Nous
obtenons une formule nouvelle pour les cumulants libres en termes d’arbres, et retrou-
vons une interprétation de la relation en termes de caractères du à Ebrahimi-Fard et
Patras.
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1 Introduction

Recent works on certain functional equations involving reversion of formal power se-
ries have revealed that the appropriate setting for their combinatorial understanding
involved a series of noncommutative generalizations, ending up as an equation in the
group of an operad. Roughly speaking, this amounts to first interpreting the equation
in the Faà di Bruno Hopf algebra, lifting it to its noncommutative version, and get series
expanded on trees. We refer to [10, 11, 9].

Free probability provides other examples of functional equations with a combina-
torial solution. The relation between the moments and the free cumulants of a single
random variable is a functional inversion, which can be treated combinatorially by the
formalism of [9]. However, the case of several random variables is classically formulated
as a triangular system of equations which is solved by Möbius inversion over the lattice
of noncrossing partitions [12]. We shall see that this system can be encoded by a single
equation in the group of an operad. The solution arises as a sum over reduced plane
trees which reduces to Speicher’s solution in the scalar case. Also, our functional equa-
tion gives back that of Ebrahimi-Fard and Patras [5], which interpret the map from free
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cumulants to moments as a dendriform exponential sending an infinitesimal character
to a character.

2 Free cumulants as symmetric functions

The free cumulants kn of a probability measure µ on R are defined (see e.g., [12]) by
means of the generating series of its moments mn

Mµ(z) :=
∫

R

µ(dx)
z− x

= z−1 + ∑
n≥1

mnz−n−1 (2.1)

as the coefficients of its compositional inverse

Kµ(z) := Mµ(z)〈−1〉 = z−1 + ∑
n≥1

knzn−1 . (2.2)

We can interpret the coefficients of these formal power series as specializations of sym-
metric functions. In the present context, we set mn = φ(hn) = hn(X) (in the notation
of [8]). Indeed, the process of functional inversion (Lagrange inversion) admits a simple
expression within this formalism (see [8], ex. 24 p. 35). If the symmetric functions h∗n are
defined by the equations

u = tH(t) ⇐⇒ t = uH∗(u) (2.3)

where H(t) := ∑n≥0 hntn, H∗(u) := ∑n≥0 h∗nun, then,

h∗n(X) =
1

n + 1
[tn]E(−t)n+1 (2.4)

where E(t) is defined by E(t)H(t) = 1. This defines an involution f 7→ f ∗ of the ring of
symmetric functions. Now, if one sets mn = hn(X) as above, then Mµ(z) = z−1H(z−1) =
u, so that

z = Kµ(u) =
1
u

E∗(−u) = u−1 + ∑
n≥1

(−1)ne∗nun−1 , (2.5)

and finally
kn = (−1)ne∗n(X) . (2.6)

An explicit formula for e∗n is given in [8, p. 35]. Moreover, −e∗n, twisted by the sign
character, becomes the Frobenius characteristic of the action of Sn on prime parking
functions (see [10]).

A noncommutative probability space is a pair (A, φ) where A is a unital algebra over C

and φ a linear form on A such that φ(1) = 1 (see, e.g., [12]). The free moments are the
functions mn defined by

mn[a1, . . . , an] = φ(a1 · · · an). (2.7)
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The free cumulants κn are defined by the implicit equations

φ(a1 · · · an) = ∑
π∈NCn

κπ[a1, . . . , an] (2.8)

where NCn is the set of noncrossing partitions of [n] and

kπ[a1, . . . , an] = ∏
B∈π

κ[B] and for B = {b1 < . . . < bp}, κ[B] = κ[b1, . . . , bp]. (2.9)

By Möbius inversion over the lattice of noncrossing partitions, this yields

κπ[a1, . . . , an] = ∑
σ≤π

µ(σ, π)φσ[a1, . . . , an]. (2.10)

where φπ is defined similarly [12].

3 The noncommutative Faà di Bruno Hopf algebra

The construction of the Faà di Bruno algebra can be done starting from the algebra Sym
of symmetric functions [6]. Its algebra structure is the same as in Sym, but instead of the
usual coproduct ∆0hn = ∑n

i=0 hi ⊗ hn−i (with h0 = 1), we have a new one:

∆1hn =
n

∑
i=0

hi ⊗ hn−i((i + 1)X) (h0 = 1). (3.1)

It comes from the interpretation of hn as coordinates on the group of formal power series
∑n≥0 anzn+1 with (a0 = 1) under composition. In particular, the antipode is essentially
given by Lagrange inversion.

This can be repeated literally with the algebra Sym of noncommutative symmetric
functions. It is a free associative (and noncommutative) graded algebra with one gener-
ator Sn in each degree. The coproduct

∆1Sn =
n

∑
i=0

Si ⊗ Sn−i((i + 1)A) (S0 = 1) (3.2)

remains coassociative, and Sym endowed with this coproduct is a Hopf algebra, known
as Noncommutative Formal Diffeomorphims [1, 11], or as the noncommutative Faà di
Bruno algebra [3].

Let Hncdif denote this Hopf algebra, and let γ denote its antipode. The image h =
γ(σ1) of the formal sum of its generators σ1 = ∑n≥0 Sn is characterized by the functional
equation

h−1 = ∑
n≥0

Snhn. (3.3)
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The noncommutative Lagrange series g is defined by the functional equation

g = ∑
n≥0

Sngn. (3.4)

Recall that for f ∈ Sym, f (−A) is the image of f by the automorphism Sn 7→ (−1)nΛn.
It is proved in [11] that h(A) = g(−A), and that

gn = ∑
π∈NDPFn

Sev(π) (3.5)

where NDPFn is the set of nondecreasing parking functions of length n, i.e., nondecreas-
ing words over the positive integers such that πi ≤ i, and ev(π) = (|π|i)i=1..n. There is a
simple bijection between NDPFn and NCn, and gn can as well be written as a sum over
noncrossing partitions.

4 Noncommutative free cumulants

In the case of a single random variable, the free cumulants κn are the images of the
noncommutative symmetric functions Kn defined by the functional equation

σ1 = ∑
n≥0

Knσn
1 (4.1)

by the character χ of Hncdif such that χ(Sn) = mn = φ(an), where a is some element of a
noncommutative probability space (A, φ).

This equation is formally similar to (3.4), so that we can write down immediately
an expression of Sn in terms of the basis K I := Ki1 · · ·Kir , by replacing SI by K I in the
expression of gn given in (3.5). These expressions are sums over Catalan sets

Sn = ∑
π∈NDPFn

Kev(π) (4.2)

in the guise of nondecreasing parking functions, instead of noncrossing partitions.
Solving recursively for Kn, it appears that (−1)n−1Kn is given by the following rule.

Let Ω be the linear operator defined in [10] by ΩSi1,...,ir = Si1+1,i2,...,ir and Ω(1) = S1,
then Kn = −(Ωgn−1)(−A). It is proved in [10] that g−1 = 1−Ωg, and we have indeed

Theorem 4.1.
K := 1 + ∑

n≥1
Kn = g−1(−A). (4.3)

Proof. Essentially, it follows from the properties of the antipode of Hncdif.
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5 Free cumulants in the Schröder operad

To obtain a combinatorial expression for Kn, one can work in the group of the Schröder
operad as in [9, Section 10.2]. This will cover the case of several random variables. Let
PTn be the set of reduced plane trees, i.e., plane trees for which any internal node has at
least two descendants. The Schröder operad [9] is the C-vector space

S =
⊕
n≥1

Sn, where Sn = C PTn (5.1)

endowed with the composition operations

Sn ⊗ Sk1 ⊗ . . .⊗ Skn −→ Sk1+...+kn (n > 1, ki > 1) (5.2)

which map the tensor product of trees t0⊗ t1⊗ . . .⊗ tn to the tree t0 ◦ (t1, . . . , tn) obtained
by replacing the leaves of t0, from left to right, by the trees t1, . . . , tn.

The number of leaves of a tree t will be called its degree d(t), and we define the
weight wt(t) of a tree as its degree minus 1.

We can represent trees by noncommutative monomials in indeterminates Sn (n ≥ 0),
by interpreting a node of arity k as a k-ary operator denoted by Sk−1, and writing the
resulting expression in Polish notation. For example,

S = S2S0S1S3S0S0S0S0S0S1S0S0 = S201300000100 (5.3)

is of degree 8 and weight 7 = 2 + 1 + 3 + 1. The sum of the components of I is therefore
the weight of the associated tree. We shall indifferently use the notations SI or St. Let Ŝ
be the completion of the vector space S with respect to the weight wt(t) = d(t)− 1. The
group of the operad S is defined as [2]

GS =

{
◦+ ∑

n>2
pn, pn ∈ Sn

}
⊂ Ŝ (5.4)

endowed with the composition product

p ◦ q = q + ∑
n>2

pn ◦
(

q, . . . , q︸ ︷︷ ︸
n

)
∈ GS (5.5)

for p = ◦+ ∑n>2 pn and q ∈ GS . Elements of GS can be described by their coordinates

p = ∑
t∈PT

ptt and q = ∑
t∈PT

qtt (PT = ∪n≥1PTn) (5.6)
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(with q◦ = p◦ = 1) so that the coordinates of r = p ◦ q are given by

rt = ∑
t=t0◦(t1,...,tn)

pt0 gt1 . . . gtn . (5.7)

This allows to consider the group GS as the group of characters of a graded Hopf
algebra HS . It is the noncommutative polynomial algebra over reduced plane trees PT
(with unit ◦), endowed with the coproduct given by admissible cuts (see [9]): an admissible
cut of a tree T is a possibly empty subset of internal vertices c = {i1, . . . , ik} such that
along any path from the root to a leaf, there is at most one internal vertex in c. For any
such cut, one defines

• Pc(T) = Ti1 . . . Tik as the product of the subtrees of T having their root in c, ordered
as in T from the top and from left to right.

• Rc(T) as the trunk which remains after removing these trees.

The coproduct of HS is then ∆(T) = ∑c Rc(T) ⊗ Pc(T) so that HS is a graded Hopf
algebra. For instance

∆
( )

= ◦⊗ + ⊗ + ⊗ ◦. (5.8)

The bijection between GS and the group of characters on HS is obvious: since HS is
a polynomial algebra, a character χ is entirely determined by its restriction to trees of
positive weight, in other words, by its residue in the sense of [4] (which can be considered
as an infinitesimal character Res(χ)) and the values of this residue are given by the
coordinates in GS .

Consider the series of corollas

fc = S0 + ∑
n>1

SnSn+1
0 . (5.9)

The inverse of fc in GS is, in terms of trees,

gc = ∑
t∈PT

(−1)i(t)St (5.10)

where i(t) denotes the number of internal nodes of t. Indeed, denoting by ∧(t1, . . . , tn)
the tree whose subtrees of the root are t1, . . . , tn,

gc = S0 + ∑
n>1

∑
t=
∧
(t1·...·tn+1)
ti∈PT

(−1)i(t)S
∧
(t1·...·tn+1) (5.11)

= S0 + ∑
n>1

∑
t=
∧
(t1·...·tn+1)
ti∈PT

(−1)1+i(t1)+...+i(tn+1)SnSt1 · · · Stn+1 = S0 − ∑
n>1

Sngn+1
c (5.12)
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so that
S0 = gc + ∑

n>1
Sngn+1

c = fc ◦ gc. (5.13)

Definition 5.1. A Schröder tree is prime if its rightmost subtree is a leaf. We denote by PSTn
the set of prime Schröder trees of weight n.

Prime Schröder trees are enumerated by the large Schröder numbers.
The series gc, introduced in [9, Eq. (158)], projects onto the antipode g(−A) of Hncdif

by the map S0 7→ 1. Imitating the interpretation of the Lagrange series given in [9, Eq.
(164)] and exchanging the roles of gn, Kn and Sn as above, we obtain the following result.

Theorem 5.2. Define η and κ by

gc = η · S0, κ := η−1 · S0 (5.14)

where the exponent −1 denotes here the multiplicative inverse. Then, the image of κ by the
algebra morphism S0 7→ 1 is the series K of Sym. In terms of trees,

κn = ∑
t∈PSTn

(−1)i(t)−1St. (5.15)

Proof. For f ∈ GS, write f = f̃ S0, and for f , g ∈ GS , define

f a g = ( f̃ ◦ g)S0 = S0 + (( f̃ − 1) ◦ g)S0 (5.16)

This is a partial composition: if g = ◦+ ∑n>2 gn and f = ◦+ ∑n>2 fn, then

f a g = ◦+ ∑
n≥2

fn(g, . . . , g︸ ︷︷ ︸
n−1

, ◦). (5.17)

From (5.14) and g−1
c = fc, we have κ̃gc = S0 and (κ̃ ◦ fc)S0 = fc, so that

fc = κ a fc (5.18)

which implies (5.15). Indeed, plugging fc in this expression, we get an alternating sum
of trees obtained by grafting corollas to leaves of prime Schröder trees t except to the
rightmost one. The sign of the resulting tree t′ is (−1)i(t)−1 = (−1)i(t′)−k−1 if k is the
number of grafted corollas. Hence, each t′ which is not a corolla has coefficient (1− 1)n

where n is the number of its internal nodes whose all descendants are leaves.

Our formula is multiplicity-free, and the number of terms is given by the large
Schröder numbers. This expression is finer than Speicher’s formula (2.10), for exam-
ple if n = 3 the term 2φ(a1)φ(a2)φ(a3) is now separated into two binary trees.
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Equation (5.18) seems to have the same structure as that of [4], which involves den-
driform (or shuffle) and codendriform (or unshuffle) algebras.

In terms of the Hopf algebra structure, instead of the convolution of characters, which
on trees T (of positive weight) reads as

( f ∗ g)(T) = π ◦ ( f ⊗ g) ◦ ∆(T) = ∑
c={i1,...,ik}

f (Rc(T))g(Pc(T)) (5.19)

we get

( f a g)(T) = π ◦ ( f ⊗ g) ◦ ∆+
≺(T) =

≺
∑

c={i1,...,ik}
f (Rc(T))g(Pc(T)) (5.20)

where the sum is restricted to admissible cuts such that the rightmost leaf of T remains
in Rc(T) or, equivalently, such that the rightmost subtree in Pc(T) does not contain the
rightmost leaf of T.

Extending to Schröder trees the constructions of [4, 5], we can now state:

Theorem 5.3. For any tree T of positive weight, let

∆+
≺(T) =

≺
∑

c={i1,...,ik}
Rc(T)⊗ Pc(T) and ∆+

�(T) = ∆(T)− ∆+
≺(T). (5.21)

These maps can be extended to the augmentation ideal H+
S of HS by the rule:

∆+
≺(T1T2 . . . Ts) = ∆+

≺(T1).∆(T2 . . . Ts) (5.22)
∆+
�(T1T2 . . . Ts) = ∆+

�(T1).∆(T2 . . . Ts) (5.23)

so that HS is a codendriform bialgebra.

The last statement means that on H+
S , if

∆(a) = ∆̄(a) + 1⊗ a + a⊗ 1 (5.24)
∆+
≺(a) = ∆≺(a) + a⊗ 1 (5.25)

∆+
�(a) = ∆�(a) + 1⊗ a (5.26)

then

(∆≺ ⊗ I) ◦ ∆≺ = (I ⊗ ∆̄) ◦ ∆≺ (5.27)
(∆� ⊗ I) ◦ ∆≺ = (I ⊗ ∆≺) ◦ ∆� (5.28)
(∆̄⊗ I) ◦ ∆� = (I ⊗ ∆�) ◦ ∆� (5.29)

As in [4], the space Lin(HS , k), which is a K-algebra for the convolution product

( f ∗ g) = π ◦ ( f ⊗ g) ◦ ∆ (5.30)
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is also a dendrifrom algebra for left and right half-convolutions

( f ≺ g) = π ◦ ( f ⊗ g) ◦ ∆≺ (5.31)
( f � g) = π ◦ ( f ⊗ g) ◦ ∆�. (5.32)

In terms of characters in GS , the operation a (see (5.20)) coincides on trees with ≺, and
the relation between gc and κ in Theorem 5.2 translates now into the character equation

fc = ε + (Res(κ)) ≺ fc (5.33)

where ε is the unit of the group, corresponding to S0.
As we shall see, this equation implies [5, Th. 13], and thus also Speicher’s formula

for the free cumulants. We shall first explain in the forthcoming section how to derive
the latter from (5.15) by a direct combinatorial argument.

6 Speicher’s formula

Equation (5.15) is a formula for the free cumulants in terms of moments, involving prime
Schröder trees instead of noncrossing partitions as in Equation (2.10) (which was orig-
inally the definition of free cumulants). We show that our formula implies Speicher’s.
Let us first rewrite (5.15).

We label the sectors of a prime Schröder tree from left to right by 1, 2, . . . , n:

1 2 3 4 5 6

and denote v]i if the internal vertex v has a clear view to the ith sector between the ith
and (i + 1)st leaves. Then the formula for κn is:

κn[a1, . . . , an] = ∑
t∈PSTn

(−1)i(t)−1 ∏
v∈int(T)

φ

(
∏
v]i

ai

)
(6.1)

Note that if we gather the sectors i and j viewed from a same v ∈ int(t), we get a non-
crossing partition η(t). For example, the above tree gives 1|2|36|45, and this corresponds
to the term φ(a1)φ(a2)φ(a3a6)φ(a4a5).

Definition 6.1. A noncrossing arrangement of binary trees is a set of binary trees, whose leaves
are labeled with integers from 1 to n, in such a way that the canonical drawing of the trees does
not create any crossing. Let An denote the set of such objects.
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1 2 3 4 5 6 7 8 9 A 1 2 3 4 5 6 7 8 9 A

Figure 1: The bijection of Proposition 6.2.

Proposition 6.2. There is a bijection between PSTn and An, such that the image of t ∈ PSTn is
obtained by: removing each middle edge (i.e. an edge which is not leftmost or rightmost among
all edges below some internal vertex), then removing the root and all edges below.

See Figure 1 for an example. If we forget the tree structure of the arrangement and
only keep blocks of elements connected to each other, we get a noncrossing partition.
The example in Figure 1 gives 1456|23|78A|9. Going through the bijection of the previous
proposition, this gives another noncrossing partition associated to t ∈ PSTn, denoted by
ν(t).

Lemma 6.3. The noncrossing partition ν(t) is the Kreweras complement of η(t).

We refer to [7] for the definition of Kreweras complement, that we denote π 7→ πc.
Rewriting (6.1), we get:

κn[a1, . . . , an] = ∑
t∈PSTn

(−1)i(t)−1φν(t)[a1, . . . , an]

In terms of noncrossing partitions and using the previous lemma, we get:

κn[a1, . . . , an] = ∑
π∈NCn

(−1)n−#π#{t ∈ PSTn : η(t) = π}φπc [a1, . . . , an].

The number #{t ∈ PSTn : η(t) = π} can be obtained as the number of noncrossing
arrangement of binary trees projected to π, so it is a product of Catalan numbers:

#{t ∈ PSTn : η(t) = π} = ∏
B∈π

C#B−1.

But this number is also the value of the Möbius function µ(0̂, π) (see [7]), so

κn[a1, . . . , an] = ∑
π∈NCn

(−1)n−#πµ(0̂, π)φπc [a1, . . . , an].

We also have µ(0̂, π) = µ(πc, 1̂) by self duality properties of NCn. Then we recover
Speicher’s formula by replacing πc with π.
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7 The Hopf algebra of decorated Schröder trees

Let A be any set (decorations), and T(A) = K⊗ (⊗n≥1Tn(A)) the free associative K-
algebra over A, regarded as the tensor algebra of the linear span of A.

Using the grading of HS , we can define a decorated version of the algebra HS

HS(A) = K⊕
⊕
n≥1

(HS ,n ⊗ Tn(A)). (7.1)

This space has an obvious algebra structure, and it is also easy to extend the Hopf
algebra structure of HS . Consider a tree T ∈ HS ,n and w = a1 . . . an in Tn(A). Since T
has n + 1 leaves, one can label its sectors from left to right with a1, . . . , an and identify
T ⊗ w with this decorated tree. For instance

a1 a2 a3 a4 a5 a6 (7.2)

In an admissible cut c for such a tree, Pc(T) obviously inherits the letters ai associated
with the subtrees in Pc(T), and Rc(T) keeps the letters which can be viewed from the
internal vertices of T that are still in Rc(T). It is clear that HS(A) is a Hopf algebra, and
a straightforward adaptation of the proof of Theorem 5.3 shows that

Theorem 7.1. HS(A) is a codendriform bialgebra.

The decorated analog of Theorem 5.2 reads on characters

Theorem 7.2. Let φ be a linear form on T(A). Extend it to a map φ : HS(A)→ C sending the
decorated corollas to φ(w) where w is the decorating word and the other trees to 0 (regarded as
an infinitesimal character of HS(A)), and let Φ be its extension to a character of HS(A). Then,

Φ = ε + κ ≺ Φ (7.3)

where κ is the infinitesimal character on HS(A) defined by

κ(T ⊗ a1 . . . an) =


(−1)i(t)−1 ∏

v∈int(T)
φ

(
∏
v]i

ai

)
i f T ∈ PST

0 otherwise

(7.4)

where v]i means that the internal vertex v has a clear view to the ith sector between the ith and
(i + 1)th leaves.

In [4] and [5], free cumulants appear as the solution of a dendriform equation for
characters of T(T≥1(A)) (the double tensor algebra).
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Theorem 7.3. Let ι be the algebra morphism T(T≥1(A)) → HS(A) sending a word w =
a1 · · · an to the sum of all trees with n sectors decorated from left to right by a1, . . . , an. Then,
(i) ι is a coalgebra morphism;
(ii) ι is a codendriform morphism: (ι⊗ ι) ◦ ∆≺(w) = ∆≺ ◦ ι(w).

This result implies the formula for free cumulants, as ι send the maps Φ and κ of
Theorem 7.2 to the free moments Φ̃ = φ ◦ ι and cumulants κ̃ = κ ◦ ι of [4].
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